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ABSTRACT

The duplication of preexisting genes has played a major role in evolution. To understand the evolution
of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held
view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication.
To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We
find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phyloge-
netic analysis of these genes supports the idea that a single whole-genome duplication took place early
in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The
origin of additional paralogs evident in this and other gene families could be the result of subsequent,
smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key
organism for understanding evolution of the vertebrate genome.

OMPARISONS of the genomes of a wide variety

of organisms have revealed that the evolution of
genome complexity has not proceeded by nucleotide
substitution alone, but rather has relied on extensive
gene duplication (HALDANE 1932; OnNO 1967; NEI
1969). These duplications could have involved individ-
ual genes or small chromosomal segments or encom-
passed the entire genome. In a classic treatise, OHNO
(1970) proposed that the latter process may have been
of particular importance during chordate evolution. By
comparing the amount of DNA present in the nuclei
of diverse animal species, he noted that there was an
apparent stepwise increase in DNA content accompa-
nying the morphological transitions from invertebrates,
to primitive chordates, to vertebrates. He suggested that
this phenomenon could be explained by two rounds of
whole-genome duplication (tetraploidization). Recent
estimates of gene numbers showing that modern verte-
brates have on the order of 100,000 genes while their
close invertebrate relatives possess around 15-20,000
genes (SIMMEN et al. 1998) appear to support this no-
tion, although a wide range of estimates continues to
be proposed (EwING and GREEN 2000; LIANG et al. 2000;
RoxrsT CroLLIUS et al. 2000).

Comparisons based on gene numbers are a better
test of genome complexity than those based on DNA
content, because the amount of noncoding sequence
varies dramatically both within and between taxa, a phe-
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nomenon known as the “C-value paradox” (L1 1997).
However, an even more precise approach is to compare
the number of genes within different gene families pres-
entin both vertebrate and invertebrate genomes. In this
type of study it is important to sample comprehensively
within a family because incomplete data sets will lead to
the reconstruction of incomplete phylogenies, making
it impossible to calculate the correct number of gene
duplication events that have occurred. Even if all the
genes within a family are obtained, incorrect inferences
regarding the number of duplications can still be made
unless correct phylogenetic relationships have been es-
tablished. For example, a single invertebrate gene may
be either closely related to a subset of its vertebrate
homologs or equally related to all of them. Clearly these
different relationships imply different historic patterns
of gene duplication.

Recently, the observation that a single invertebrate
locus corresponds to several (sometimes three or four)
vertebrate counterparts in a number of gene families
served to revive the idea that vertebrate genomes
evolved via two rounds of tetraploidization (HoLLAND
et al. 1994; Stpow 1996). However, with the sole excep-
tion of the Hox gene clusters, there is no gene family
in which all the genes have been isolated from the ge-
nomes of both a vertebrate and a basal chordate. This
paucity of data has seriously impeded accurate recon-
struction of the sequence of gene duplication events
that have occurred in the course of vertebrate genome
evolution. Consequently, diverse models have been pro-
posed, ranging from several rounds of tetraploidization
followed by extensive gene loss, to multiple subchromo-
somal duplications (reviewed by SKRABANEK and WOLFE
1998; SMITH et al. 1999).

The cephalochordate amphioxus is the closest living
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invertebrate relative of the vertebrates (Wapa and
Saton 1994) and therefore the best model organism for
understanding the composition of the ancestral chor-
date genome. In an ongoing study of the function of
T-box genes during vertebrate embryogenesis and evo-
Iution (GIBSON-BROWN et al. 1996, 1998a,b; RUVINSKY
et al. 1998, 2000), we decided to isolate the amphioxus
members of this gene family to investigate their roles
during evolution of the vertebrate body plan.
T-box genes encode a family of sequence-specific DNA-
binding proteins that are known to act as transcription
factors during embryogenesis of diverse metazoans
ranging from hydra to humans (PAPAIOANNOU and S1L-
VER 1998; ParatoanNou 2000). Since we have found
that several T-box gene duplications occurred around
the divergence of the vertebrate and invertebrate lin-
eages (AGULNIK el al. 1996; RUVINSKY and SILVER 1997;
RuviNsky et al. 2000), we predicted that characteri-
zation of the entire gene family in an invertebrate
chordate would provide an insight into vertebrate ge-
nome evolution. We have therefore undertaken an ex-
tensive series of systematic screens for amphioxus T-box
genes.

MATERIALS AND METHODS

Tissue samples and cDNA libraries: Adult amphioxus
(Branchiostoma floridae) were collected off the south shore of
Courtney Campbell Causeway in Old Tampa Bay (Tampa, FL)
during the spawning season of 1998. Animals were frozen
upon collection. Genomic DNA was extracted from a single
adult male using a standard phenol-chloroform purification
method. Two NZapII amphioxus cDNA libraries were screened
for T-box genes. One was constructed from 5- to 24-hr embryos
(provided by Jim Langeland of Kalamazoo College, Kalama-
zoo, MI), the other, from 2- to 4-day larvae (provided by Linda
Holland of the Scripps Institution of Oceanography, San
Diego, CA).

PCR on genomic DNA: A set of degenerate primers was
designed against the following oligopeptide sequences:
NSMHKYQ (forward) and VISYQNHK (reverse). This primer
pair amplifies an ~150-nucleotide fragment completely con-
tained within one of the exons of the T-box (Figure 1). A
high level of sequence variation within this region allows the
unambiguous assignment of a gene to a specific T-box gene
subfamily. PCR amplification on genomic DNA was carried
out (35 cycles: 95° for 1 min, 50° for 1 min, 72° for 1.5 min)
and the products were cloned into the pCR2.1 vector (In-
vitrogen, San Diego). Thirty-six independent clones were se-
quenced using an ABI sequencer.

Library screens: Initially, a mixed embryonic stage library
was screened at high stringency (hybridized in Church buffer
at 65°, washed twice at 65° in 0.1X SSC, 0.1% SDS) with a
cocktail of cloned PCR fragments derived from five different
amphioxus T-box genes. Positive clones were plaque-purified
and excised in vivo. Replicate dot-blots were probed with the
same five PCR fragments used for screening and led to the
discovery of three different genes. Since two anticipated genes
were not obtained from this screen, a later-stage larval library
was screened under the same conditions with a cocktail of the
remaining two PCR probes yielding a single new gene. Finally,
the embryonic library was rescreened at moderate stringency
(hybridized at 57°, washed twice at 60° in 0.5X SSC, 0.1%

SDS) with a probe derived from the zebrafish tbx16 gene
(RuviNsky et al. 1998). Clones corresponding to two more
genes were identified. One or more of the longest clones of
each gene were sequenced.

Phylogenetic analysis: Amino acid sequences of T-domains
from the newly characterized genes were manually aligned
with those of other family members using the Wisconsin GCG
package (GENETICS COMPUTER GROUP 1996). Unalignable re-
gions were excluded from analysis. A neighbor-joining tree was
constructed, and the reliability of its topology was statistically
tested, using the METREE program (RzHETSKY and NEI
1994). Appropriate Drosophila and Caenorhabditis elegans se-
quences were included to provide a timescale reference and
serve as outgroups.

RESULTS

Isolation of seven new amphioxus T-box genes: Am-
plification by PCR from genomic DNA yielded frag-
ments of five distinct amphioxus T-box genes. High
stringency screening of two cDNA libraries with these
fragments resulted in the isolation of clones correspond-
ing to four different genes. Two additional genes were
isolated in a subsequent low stringency screen. No
clones corresponding to one of the five PCR fragments
were recovered in any of the library screens. Thus we
have recovered cDNA clones of six previously uncharac-
terized genes and a PCR product derived from a seventh
gene. Including the two previously reported genes, Am-
phiBral and AmphiBra2 (HOLLAND et al. 1995; TERAZAWA
and SATOH 1995), this brings the total complement of
T-box genes in the amphioxus genome to a minimum
of nine genes. We have aligned the newly obtained am-
phioxus sequences to those of genes from all previously
described T-box subfamilies (Figure 1).

In addition, we have identified and included three
new human T-box genes based on sequences available
in GenBank. The first, TBX20 (AJ237589; MEINS ¢t al.
2000), is orthologous to zebrafish tx20 (AHN et al.
2000), also known as AarT (GRIFFIN et al. 2000), Drosoph-
ila H15 (X98766; BRook and CoHEN 1996), and C. eleg-
ans tbx-12 (AGULNIK el al. 1997). The second is TBX21,
formerly known as TBLYM (AF093098; S. YANG, unpub-
lished results) and T-bet (AF241243; SzAaBO et al. 2000).
The third gene, which we have designated TBX22
(AL031000) consistent with our previous practice and
with the approval of the Human Gene Nomenclature
Committee, has been identified through the genome
sequencing efforts of the Sanger Centre Chromosome
X Mapping Group.

Phylogenetic positions of amphioxus T-box genes:
For meaningful comparisons to be made between genes
in different species it is essential to distinguish genes
that are orthologous (separated due to speciation events)
from those that are paralogous (separated due to gene
duplication events). To determine orthology/paralogy
relationships between the amphioxus and vertebrate
genes we conducted a phylogenetic analysis of the entire
gene family. In the analysis we included two orthologs
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of each known vertebrate T-box gene whenever possible.
When selecting which vertebrate species to include, we
consistently chose the two most distantly related organ-
isms for which the longest sequences were available. For
example, a human/zebrafish gene pair was preferred
over a human/chicken gene pair. Because the mouse
and human orthologs are nearly identical they can be
considered interchangeable.

The sequence of the PCR fragment for which no
cDNA clones were obtained was too short to be included
in the phylogenetic analysis. However, since this se-
quence spans the most variable region within the
T-box (Figure 1), visual inspection allowed its provi-
sional assignment as an amphioxus ortholog of the ver-
tebrate 70x20 gene (within the 34 amino acids com-
pared there were only 7 amino acid replacements, of
which 3 are conservative).

The phylogenetic relationships of the rest of the newly
obtained amphioxus T-box sequences were determined
by a neighbor-joining analysis (Figure 2). Examination
of the tree reveals that in no case do we find a 1:4
correspondence between the number of amphioxus and
vertebrate genes as predicted by the “two whole-genome
duplication” model. Instead, we typically observe a 1:2
or 1:3 correspondence. We consider each subfamily in-
dividually below.

Tbx1/10: A single amphioxus gene corresponds to
two vertebrate genes, a result consistent with a single
genome duplication.

Tbx15/18/22: A single amphioxus gene corresponds
to three vertebrate genes. It should be noted that
whereas Tbx15and Tbx18 comprise a pair of most closely
related paralogs, the branching order of 7bx22 and Am-
phiTbx15/ 18/ 22 is only weakly supported and should
therefore be considered unresolved. This result is con-
sistent with at least two possible scenarios: two genome
duplications followed by a single gene loss, or a single
tetraploidization followed by a local gene duplication.

Tbx20: A single amphioxus gene corresponds to a
single vertebrate gene. If one genome duplication had
occurred after separation of the cephalochordate and
vertebrate lineages, only a single gene loss would have
to be invoked. More gene losses would have to be postu-
lated if additional genome duplications had occurred.
Ifno genome duplications have occurred, no gene losses
would have to be invoked.

Tbx2/ 3 and Tbx4/5: Genes within these two subfami-
lies are present in the genome as two cognate, linked
pairs (AGULNIK ¢t al. 1996; RUVINSKY and SILVER 1997).
Because of their close linkage, Tbx2 and Tbx4 should
be considered as sampling a single locus, as should 7bx3
and Tbx5. The topology within the 7bx2/3 subfamily
is inconsistent with the well-established phylogenetic
relationships of the species: amphioxus is more closely
related to vertebrates than is Drosophila. However, the
internal branch separating (d-omb (Tbx2,Tbx3)) from
AmphiTbx2/ 3 receives little statistical support and should

thus be considered artifactual. In both of these subfami-
lies a single amphioxus gene corresponds to two verte-
brate genes, consistent with a single genome duplica-
tion.

Eomes/ Tbrl/ Tbx21: Due to the lack of statistical sup-
port, the divergence patterns of the basal branches
within this subfamily should be considered unresolved.
There is therefore an apparent correspondence be-
tween a single amphioxus gene and three vertebrate
genes. Thus the two possible scenarios outlined above
for the Thx15/ 18/ 22 subfamily apply in this case as well.

Brachyury/ Tbx19: The phylogenetic relationships within
this subfamily are complicated. The two amphioxus
Brachyury genes are derivatives of a relatively recent lin-
eage-specific duplication (HOLLAND et al. 1995; Figure
2),implying that the ancestral cephalochordate genome
contained a single locus. It is possible that, as in the
case of the Tbx20 subfamily, this single ancestral locus
corresponds to a single vertebrate gene, implying that
an amphioxus counterpart to 7bx19 either could have
been lost or is waiting to be discovered. Itis also possible
that, despite a high confidence probability value, the
nesting of the amphioxus genes with vertebrate
Brachyury is artifactual. This interpretation would imply
that a single ancestral locus gave rise to both the verte-
brate Brachyury and Tbx19 genes, subsequent to the di-
vergence of the cephalochordates. Finally, it should be
noted that the topology of this subfamily is similar to
that of the Eomes/ Tbrl/ Tbx21 subfamily. If only a single
gene loss had occurred in the latter (e.g., T0rl), the
two topologies would become identical. It is formally
possible that a recently described Brachyurylike gene in
Xenopus (Xbra3, HAYATA et al. 1999) represents this
“lost” gene. However, it is more closely related to the
other Xenopus Brachyury gene (Xbra) than it is to either
Tbx19or the Brachyury genes from other tetrapods (anal-
yses not shown). Since Xenopus is known to be a tetra-
ploid species (SKRABANEK and WOLFE 1998), Xbra3 is
most likely a pseudoallele of Brachyury. If an ortholog
of this gene were to be found in nontetraploid species
such as humans and mice, this interpretation would
have to be rejected. The above arguments suggest that
any of the scenarios encountered so far (1:1, 1:2, or
1:3) are possible in the case of this subfamily.

Tbx6/ Tbx16: Previous analyses have demonstrated
that orthology assignments within the vertebrate Tbx6/
Tbx16 subfamily are complicated. For example, despite
almost identical expression patterns (CHAPMAN el al.
1996; HUG et al. 1997), the mouse and zebrafish Tbx6
genes are apparently not orthologous (RUVINSKY et al.
1998). Furthermore, orthologs of 7hx16 have been de-
scribed in zebrafish (tbx16), Xenopus (variously named
Antipodean, Bral, VegT, and Xombi), and chicken (7Tbx6L),
but not in mouse or human, the two species from which
the largest number of T-box genes are known and in
which the most intensive screens for new genes have
been undertaken. Several possible explanations can ac-
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count for this phenomenon. First, genes of this subfam-
ily appear to be evolving at a faster rate than those of
other subfamilies, thus complicating the phylogenetic
analysis (L1 1997). Second, there may have been one
or more instances of gene evolution by a birth-and-
death mechanism, whereby different paralogs are elimi-
nated in different lineages (NEI ¢t al. 1997). Third, a
relatively recent gene conversion event between paralo-
gous T-box genes could have been responsible for the
origin of substantial sequence differences between gen-
uine orthologs (L1 1997). For these reasons, and since
inclusion of genes of the Tbx6/ Tbx16 subfamily disrupts
the overall topology of the T-box family tree (analysis
not shown), we excluded them from the phylogenetic
analysis. However, as with AmphiTbx20, we were able to
assign one of the amphioxus cDNA clones to this puta-
tive subfamily on the basis of visual comparison of its
sequence to those of other T-box genes within the highly
variant region of the T-domain (Figure 1, region be-
tween the PCR primers). As in the case of the Brachyury/
Tbx19 subfamily, it is not possible at present to deter-
mine the true ratio between the vertebrate and amphi-
oxus paralogs. Additional work will be required to re-

solve the enigmatic phylogenetic relationships within
this putative subfamily.

DISCUSSION

A tentative interpretation of the relationships be-
tween the amphioxus and vertebrate T-box genes, based
on the phylogenetic tree and the above arguments, is
represented schematically in Figure 3. Examination of
this diagram reveals three clear cases of a 1:2 correspon-
dence between the number of cephalochordate and
vertebrate genes (Tbx1/ 10, Tbx2/ 3, and Tbx4/5). Since
Tbx2 and Tbx4, as well as Tbx3 and Tbx5, are organized
in two tightly linked clusters (AGULNIK et al. 1996; Ru-
vINSKY and SILVER 1997; WATTLER el al. 1998), Tbx2/3
and Tbx4/5 were linked in the preduplication condi-
tion. The amphioxus genes should therefore be consid-
ered as representing a single locus. There are two cases
of an apparent 1:3 correspondence (7bx15/18/22 and
Eomes/Tbrl/Tbx21) and one instance of a 1:1 correspon-
dence (70x20). Finally, in the case of the last two subfam-
ilies (7Tbx6/ 16and Brachyury/ Tbx19), where the relation-
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ships are far from clear, two vertebrate genes appear to
correspond to a single cephalochordate gene.

Comprehensive sampling of a gene family is essential
for determining correct orthology/paralogy relation-
ships. Incomplete data sets are bound to give incorrect
estimates of the number and pattern of gene duplication
events during evolution of the family, undermining
their utility for the understanding of genome evolution.

Our data represent the most extensive sampling of
an amphioxus gene family to date: nine loci were ana-
lyzed, of which seven can be considered independent
data points for the analysis of genome evolution, as they
are dispersed throughout the genome (BOLLAG et al.
1994; AGULNIK et al. 1996, 1998; HaNncocK et al. 1999;
Y1 et al. 1999). To assess the completeness of our verte-
brate T-box gene data set, we searched GenBank to
see how many of the known T-box genes have been
identified through the “random” sequencing efforts of
the Human Genome Project. Because, in the three-
fourths of the human genome sequenced to date (press
release dated 04/15/2000; http:/www.ncbi.nlm.nih.
gov/genome/seq/), 13 of the 17 known human T-box
genes have been found, it is unlikely that many, if any,
more genes remain to be discovered. Because we were
able to isolate amphioxus cognates of all known verte-
brate T-box genes and because no amphioxus genes
without a vertebrate counterpart were recovered, we
can be confident that we have obtained a comprehen-
sive data set.

The overall topology of the phylogenetic tree pre-
sented in Figure 2 immediately suggests a framework
for a revised, rational nomenclature of the T-box gene
family. In particular we note that, in accordance with
the earlier proposals of AGULNIK et al. (1996) and Papar-
OANNOU and SILVER (1998), the family can be subdi-
vided into a number of subfamilies. Once the complete

Brachyury

sequence of the human genome is available, it would
be an opportune time to rationalize the nomenclature
taking into consideration the phylogenetic relationships
within the entire family. The purpose of such a scheme
would be to allow the unambiguous placement and ap-
propriate naming, of any newly discovered gene, from
any metazoan, within a preestablished framework. This
would prevent the unfortunate practice of the inconsis-
tent naming of new genes, benefiting the community
as a whole and especially those engaged in comparative
studies of T-box genes in different species.

The widely accepted notion that there have been two
rounds of whole-genome duplication at the base of the
vertebrate lineage derives, in large part, from the fact
that amphioxus possesses a single Hox cluster, whereas
the inferred ancestral condition for jawed vertebrates
is four Hox clusters (GARCIA-FERNANDEZ and HOLLAND
1994). The recent discovery of at least seven Hox clusters
in zebrafish (AMORES et al. 1998; PRINCE et al. 1998)
and medaka (NARUSE ef al. 2000) represents a derived
condition within the teleost fish lineage and does not
alter this interpretation. There are two distinct problems
in inferring the pattern of evolution of the entire ge-
nome from the Hox data set. First, despite the fact that
there are as many as 13 genes in each cluster, since they
are tightly linked, each cluster can only be considered
as sampling a single locus. Thus a phylogenetic analysis
based on Hox clusters can reveal the evolutionary history
of only a very small portion of the genome. Confident
reconstructions of genome history should be based on
the examination of a large number of independent,
unlinked loci. Thus our data set of seven independent
loci provides a much more extensive coverage of the
genome. Second, if four genes (1, 2, 3, and 4) are the
products of two successive rounds of whole-genome
duplication, their phylogenetic relationship must be



1256 I. Ruvinsky, L. M. Silver and J. J. Gibson-Brown

((1,2)(3,4)), yet the topology reconstructed for the Hox
clusters (ZHANG and N1 1996; BAILEY et al. 1997) actu-
ally appears to be (1(2(3,4))). This can be interpreted
as evidence for a three-step sequential origin of four
Hox clusters, contradicting the two whole-genome dupli-
cation model (BAILEY e al. 1997). Other studies (SKRA-
BANEK and WorLrE 1998; HucHES 1999; MARTIN 1999)
also demonstrate that, despite perceptions to the con-
trary, existing data do not currently support the view
that vertebrate genome evolution has proceeded via two
rounds of tetraploidization.

What can be concluded about the evolution of the
vertebrate genome on the basis of our data? When draw-
ing inferences about the distant evolutionary past of
complex genetic systems, as in other areas of science,
one can never prove a conjecture, but can merely gather
the evidence required to reject a specific hypothesis.
Additional complications arise in this case because there
is no single history of “the vertebrate genome,” since
different gene families have evolved along different
routes in different lineages. This is not to say that no
progress can be made.

Clearly, there has been a dramatic increase in the
number of genes within the vertebrate lineage following
its separation from the cephalochordates, rejecting the
concept of a “static genome.” This increase in gene
number could have been due to either numerous small-
scale duplications or a few genome-wide duplications,
or perhaps a combination of the two.

If the vertebrate genome was assembled in a piece-
meal manner, this would imply two distinct phases in
the rate of genome evolution. In the early phase, be-
tween the divergence of cephalochordates and the ori-
gin of jawed vertebrates, a high rate of local gene dupli-
cations would have to be postulated. Subsequently, the
rate of duplications must have slowed considerably, or
almost stopped, because all jawed vertebrates have a
very similar gene complement (teleost- and Xenopus-
specific tetraploidizations notwithstanding). Both mo-
lecular and paleontological data indicate that the first
phase was considerably shorter than the second (KuMARr
and HEDGEs 1998; Conway Morris 2000). Moreover,
itis known that tetraploidizations do occur and produce
viable organisms. Thus it seems more plausible to sug-
gest that at least one whole-genome duplication was
involved in the elaboration of vertebrate gene families.
The identification in vertebrate genomes of large para-
logous chromosomal regions (e.g., LUNDIN 1993; BAILEY
et al. 1997; Ruvinsky and SILVER 1997), in which genes
appear to have duplicated at the same time, further
supports the whole-genome duplication hypothesis.

Conventionally, considerations of parsimony require
that, unless compelling evidence is presented to the
contrary, the interpretation requiring the minimum
number of events is accepted as the most likely explana-
tion. It is formally possible that the vertebrate genome
has undergone many rounds of tetraploidization fol-

lowed by extensive gene loss. Indeed, gene loss is known
to be extensive in some lineages and can be responsible
for determining the size of the genome (PETROV et al.
1996, 2000). Despite this, our data provide no evidence
to suggest that there have been more than two whole-
genome duplications.

We conclude that at least one but no more than two
whole-genome duplications occurred in the vertebrate
lineage, after divergence of the cephalochordates, but
before the radiation of extant jawed vertebrates. The
origin of additional paralogs evident in this and other
gene families could be the result of subsequent, smaller-
scale chromosomal duplications.

To infer the steps through which the vertebrate ge-
nome has evolved it is ultimately desirable to compare
the full complement of genes from the genomes of a
basal chordate and a crown-group vertebrate. Comple-
tion of the Human Genome Project in the near future
will provide a complete data set for the latter. Currently,
the fully sequenced genomes of Drosophila and C. eleg-
ans provide the only source of information for compara-
tive genome analyses in metazoans. The present study
highlights the utility of amphioxus as a more appro-
priate organism for understanding the ancestral compo-
sition of the chordate genome. If complete data sets for
a large number of amphioxus gene families were to
become available, they could be subjected to the type
of phylogenetic analysis presented here. This large num-
ber of independent data sets would provide an invalu-
able resource for the understanding of vertebrate ge-
nome evolution.
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Note added in proof: Since acceptance of the manuscript, the draft
sequence of the human genome has been released. By searching
GenBank we have found one additional human T-box gene, which
we have designated 7BX23 with the approval of the Human Gene
Nomenclature Committee (accession no. AL157899), that was not
included in our original analysis. 7BX23is closely related to the human
Tand TBX19genes, but only distantly related to the genes from other
subfamilies. This increases to three the number of T-box subfamilies
in which there is an apparent 1:3 correspondence between the number
of cephalochordate and vertebrate genes.
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